Agile Data Science - процесс обработки данных

В этой главе мы поймем процесс обработки данных и терминологию, необходимую для понимания процесса.

«Наука о данных - это сочетание интерфейса данных, разработки алгоритмов и технологий для решения сложных аналитических задач».

Data Science Process

Наука о данных - это междисциплинарная область, охватывающая научные методы, процессы и системы с категориями, включенными в нее как «Машинное обучение, математика и статистика», с традиционными исследованиями. Это также включает в себя сочетание навыков хакерства с предметным опытом. Наука о данных опирается на принципы математики, статистики, информатики и информатики, интеллектуального анализа данных и прогнозного анализа.

Различные роли, которые составляют часть команды по науке о данных, упомянуты ниже -

Клиенты

Клиенты - это люди, которые используют продукт. Их интерес определяет успех проекта, и их отзывы очень ценны в науке о данных.

Развитие бизнеса

Эта команда специалистов по науке данных подписывается на первых клиентов, либо из первых рук, либо путем создания целевых страниц и рекламных акций. Команда развития бизнеса обеспечивает ценность продукта.

Менеджеры по продукту

Менеджеры по продуктам понимают важность создания лучшего продукта, который является ценным на рынке.

Дизайнеры взаимодействия

Они сосредоточены на взаимодействии между моделями данных, чтобы пользователи находили подходящую ценность.

Ученые данных

Исследователи данных исследуют и трансформируют данные новыми способами для создания и публикации новых функций. Эти ученые также объединяют данные из разных источников, чтобы создать новую ценность. Они играют важную роль в создании визуализаций с исследователями, инженерами и веб-разработчиками.

Исследователи

Как следует из названия, исследователи занимаются научной деятельностью. Они решают сложные проблемы, которые ученые не могут сделать. Эти проблемы включают в себя интенсивное внимание и время машинного обучения и модуль статистики.

Адаптация к изменениям

Все члены команды по науке о данных обязаны адаптироваться к новым изменениям и работать на основе требований. Несколько изменений должны быть сделаны для принятия гибкой методологии с наукой о данных, которые упомянуты следующим образом:

  • Выбор универсалов над специалистами.

  • Предпочтение маленьких команд над большими командами.

  • Использование инструментов и платформ высокого уровня.

  • Непрерывное и повторное разделение промежуточных работ.

Заметка

В Agile Data Science Team небольшая команда универсалов использует высокоуровневые инструменты, которые масштабируются и уточняют данные с помощью итераций во все более высокие состояния ценности.

Рассмотрим следующие примеры, связанные с работой членов команды по науке о данных:

  • Дизайнеры поставляют CSS.

  • Веб-разработчики создают целые приложения, понимают пользовательский опыт и дизайн интерфейса.

  • Специалисты по обработке данных должны заниматься как исследованиями, так и созданием веб-сервисов, включая веб-приложения.

  • Исследователи работают в кодовой базе, которая показывает результаты, объясняющие промежуточные результаты.

  • Менеджеры по продуктам стараются выявлять и понимать недостатки во всех смежных областях.